• 欢迎访问蜷缩的蜗牛博客 蜷缩的蜗牛
  • 微信搜索: 蜷缩的蜗牛 | 联系站长 kbsonlong@qq.com
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏吧

第五章 Python函数你知多少

Python 蜷缩的蜗牛 8个月前 (02-08) 79次浏览 已收录

函数作用:把一些复杂的代码封装起来,函数一般都是一个功能,用的时候才调用,提高重复利用率和简化程序结构。

5.1 语法

def functionName(parms1, parms2, ...):
   code block
   return expression

函数以 def 关键字开头,空格后跟函数名,括号里面是参数,用于传参,函数代码段里面引用。

5.2 函数定义与调用

# 定义函数
>>> def func():
...   print "Hello world!"
...   return "Hello world!" 
...
# 调用函数
>>> func()
Hello world!
'Hello world!'

当我们定义好函数,是不执行的,没有任何输出。当输入函数名后跟双小括号才会执行函数里写的代码。

顺便说下 print 和 return 区别:

有没有点奇怪!为什么 print 和 return 输出一样呢,return 就加个单引号,貌似也没啥明显区别啊!其实在解释器下所有的结果都会输出的。

先了解下 return 作用:结束函数,并返回一个值。如果不跟表达式,会返回一个 None。

好,那么我们深入了解下他们区别,举个例子,写个 py 程序:

#!/usr/bin/env python
def func():
    print "1: Hello world!"
    return "2: Hello world!"
func()
# python test.py
1: Hello world!

明白点了嘛?print 是打印对象的值,而 return 是返回对象的值。也就是说你 return 默认是将对象值存储起来,要想知道里面的值,可以用 print 可以打印。

#!/usr/bin/env python
def func():
    print "1: Hello world!"
    return "2: Hello world!"
print func()
# python test.py
1: Hello world!
2: Hello world!

为什么函数里面不用 print 就在这里,往往我们定义一个函数是不需要打印的,而是交给其他代码去处理这个函数返回值。当然,print 在调试函数代码时会起到很好的帮助。

5.3 函数参数

  5.3.1 接受参数

    >>> def func(a, b):    
    ...   print a + b
    ...
    >>> func(1, 2)
    3
    >>> func(1, 2, 3)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: func() takes exactly 2 arguments (3 given)

   a 和 b 可以理解为是个变量,可由里面代码块引用。调用函数时,小括号里面的表达式数量要对应函数参数数量,并且按传参按位置赋予函数参数位置。如果数量不对应,会抛出 TypeError 错误。

   当然,函数参数也可以是数组:

    >>> def func(a):    
    ...   print a
    ...
    >>> func([1,2,3])
    [1, 2, 3]
    >>> func({'a':1,'b':2})
    {'a': 1, 'b': 2}

   如果不想一一对应传参,可以指定参数值:

    >>> def func(a,b):    
    ...   print a + b
    ...
    >>> func(b=2,a=1)
    3

   5.3.2 函数参数默认值

   参数默认值是预先定义好,如果调用函数时传入了这个值,那么将以传入的为实际值,否则是默认值。

    >>> def func(a, b=2):    
    ...   print a + b
    ...
    >>> func(1)
    3
    >>> func(1, 3)
    4

   5.3.3 接受任意数量参数

   上面方式固定了参数多个,当不知道多少参数时候可以用以下方式。

   单个星号使用:

    >>> def func(*a):         
    ...   print a
    ...
    >>> func(1,2,3)
    (1, 2, 3)

   单个星号存储为一个元组。

   两个星号使用:

    >>> def func(**a):    
    ...   print a
    ...
    >>> func(a=1, b=2, c=3)
    {'a': 1, 'c': 3, 'b': 2}

   两个星号存储为一个字典。可见它们都是以数组的形式传入。

   你也许在查资料的时候,会看到这样写的函数参数(*args, **kwargs),与上面只是名字不一样罢了 :

    >>> def func(*args, **kwargs):    
    ...   print args
    ...   print kwargs
    ...
    >>> func(1,2,3,a=1,b=2,c=3)
    (1, 2, 3)
    {'a': 1, 'c': 3, 'b': 2}

   与普通参数一起使用:

    >>> def func(a, b, *c):    
    ...   print a + b
    ...   print c
    ...
    >>> func(1,2,3,5,6)
    3
    (3, 5, 6)
    >>> def func(a, b, **c):
    ...   print a + b
    ...   print c
    ...
    >>> func(1,2,a=1,b=2,c=3)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: func() got multiple values for keyword argument 'a'
    >>> func(1,2,c=3,d=4,e=5)
    3
    {'c': 3, 'e': 5, 'd': 4}

    抛出异常,是因为传入的第一个参数 1,和第三个参数 a=1,都认为是传入函数参数 a 了。请注意下这点。

5.4 作用域

作用域听着挺新鲜,其实很简单,就是限制一个变量或一段代码可用范围,不在这个范围就不可用。提高了程序逻辑的局部性,减少名字冲突。

作用域范围一般是:全局(global)->局部(local)->内置(build-in)

先看看全局和局部变量:

>>> a = 2
>>> def func():
...   b = 3
...
>>> a
2
>>> b
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'b' is not defined

a 变量的作用域是整个代码中有效,称为全局变量,也就是说一段代码最开始定义的变量。

b 变量的作用域在函数内部,也就是局部变量,在函数外是不可引用的。

这么一来,全局变量与局部变量即使名字一样也不冲突。

如果函数内部的变量也能在全局引用,需要使用 global 声明:

>>> def func():
...   global b
...   b = 3
...
>>> b
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'b' is not defined
>>> func()
>>> b
3

有报错,说明一个问题,当函数没引用使用,里面的代码块是没有解释的。

使用 global 声明变量后外部是可以调用函数内部的变量的。

5.5 嵌套函数

1)不带参数

>>> def func():
...   x = 2
...   def func2():
...     return x
...   return func2  # 返回 func2 函数
...
>>> func()()
2
>>> func2()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'func2' is not defined
>>> def func():   
...   x = 2         
...   global func2
...   def func2():
...     return x 
...   return func2
...
>>> func()()
2
>>> func2()
2

内层函数可以访问外层函数的作用域。内嵌函数只能被外层函数调用,但也可以使用 global 声明全局作用域。

调用内部函数的另一种用法:

2)带参数

>>> def func(a):
...   def func2(b):
...     return a * b
...   return func2
...
>>> f = func(2)   # 变量指向函数。是的,变量可以指向函数。
>>> f(5)
10
>>> func(2)(5)
10

内层函数可以访问外层函数的作用域 。但变量不能重新赋值,举例说明:

>>> def func():
...   x = 2
...   def func2():
...      x = 3
...   func2()
...   return x
...
>>> func()
2
>>> def func():
...   x = 2
...   def func2():
...     x += 1
...   func2()
...   return x
...
>>> func()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 5, in func
  File "<stdin>", line 4, in func2
UnboundLocalError: local variable 'x' referenced before assignment

5.6 闭包

“官方”的解释是:所谓“闭包”,指的是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分。

其实,上面嵌套函数就是闭包一种方式:

>>> def func(a):
...   def func2(b):
...     return a * b
...   return func2
...
>>> f = func(2)   # 变量指向函数。是的,变量可以指向函数。
>>> f(5)
10

func 是一个函数,里面又嵌套了一个函数 func2,外部函数传过来的 a 参数,这个变量会绑定到函数 func2。func 函数以内层函数 func2 作为返回值,然后把 func 函数存储到 f 变量中。当外层函数调用内层函数时,内层函数才会执行(func()()),就创建了一个闭包。

5.7 高阶函数

高阶函数是至少满足这两个任意中的一个条件:

1) 能接受一个或多个函数作为输入。

2)输出一个函数。

abs、map、reduce 都是高阶函数,后面会讲解。

其实,上面所讲的嵌套函数也是高阶函数。

举例说明下高阶函数:

>>> def f(x):
...   return x * x
...
>>> def f2(func, y):
...   return func(y)
...
>>> f2(f, 2)
4

这里的 f2 就是一个高阶函数,因为它的第一个参数是一个函数,满足了第一个条件。

博客地址:http://lizhenliang.blog.51cto.com

QQ 群:Shell/Python 运维开发群 323779636


5.8 函数装饰器

装饰器(decorator)本身是一个函数,包装另一个函数或类,它可以让其他函数在不需要改动代码情况下动态增加功能,装饰器返回的也是一个函数对象。

先举一个例子,说明下装饰器的效果,定义两个函数,分别传参计算乘积:

#!/usr/bin/python
# -*- coding: utf-8 -*-
def f1(a, b):
    print "f1 result: " + str(a * b)
def f2(a, b):
    print "f2 result: " + str(a * b)
f1(1, 2)
f2(2, 2)
# python test.py
f1 result: 2
f2 result: 4

跟预期的那样,打印出了乘积。

如果我想给这两个函数加一个打印传入的参数,怎么办,应该这样:

#!/usr/bin/python
# -*- coding: utf-8 -*-
def f1(a, b):
    print "f1 parameter: %d %d" %(a, b)
    print "f1 result: " + str(a * b)
def f2(a, b):
    print "f2 parameter: %d %d" %(a, b)
    print "f2 result: " + str(a * b)
f1(1, 2)
f2(2, 2)
# python test.py
f1 parameter: 1 2
f1 result: 2
f2 parameter: 2 2
f2 result: 4

按照所想的打印了传入的参数,有没有方法能更简洁点呢,来看看装饰器后的效果。

#!/usr/bin/python
# -*- coding: utf-8 -*-
def deco(func):
    def f(a, b):
        print "%s parameter: %d %d" %(func.__name__, a, b)
        return func(a, b)
    return f
@deco
def f1(a, b):
    print "f1 result: " + str(a * b)
@deco
def f2(a, b):
    print "f2 result: " + str(a * b)
f1(1, 2)
f2(2, 2)
# python test.py
f1 parameter: 1 2
f1 result: 2
f2 parameter: 2 2
f2 result: 4

可见用装饰器也实现了上面方法,给要装饰的函数添加了装饰器定义的功能,这种方式显得是不是更简洁呢!

好,那么我们继续深入学习装饰器用法。

   5.8.1 无参数装饰器

    方式 1:函装饰器函数装饰函数    
    #!/usr/bin/python
    # -*- coding: utf-8 -*-
    def deco(func):
        return func
    def f1():
        print "Hello world!"
    myfunc = deco(f1)
    myfunc()  
    # python test.py
    Hello world!
    
    方式 2:使用语法糖"@"来装饰函数
    #!/usr/bin/python
    # -*- coding: utf-8 -*-
    def deco(func):
        return func
    @deco
    def f1():
        print "Hello world!"
    f1()
    # python test.py
    Hello world!

   方式 1 是将一个函数作为参数传给装饰器函数。

   方式 2 使用了语法糖,也实现同样效果。

   其实两种方式结果一样,方式 1 需要每次使用装饰器时要先变量赋值下,而方式 2 使用装饰器时直接用语法糖”@”引用,会显得更方便些,实际代码中一般也都是用语法糖。

   2)带参数装饰器

    #!/usr/bin/python    
    # -*- coding: utf-8 -*-
    def deco(func):
        def f(a, b):
            print "function name: %s" % func.__name__   # __name__ 属性是获取函数名,为了说明执行了这个函数
            return func(a, b)   # 用接受过来的 func 函数来处理传过来的参数
        return f
    @deco
    def f1(a, b):
        print "Hello world!"
        print a + b
    f1(2, 2)
    # python test.py
    function name: f1
    Hello world!
    4

   3)不固定参数

    #!/usr/bin/python    
    # -*- coding: utf-8 -*-
    def log(func):
        def deco(*args, **kwargs):
            print "function name: %s" % func.__name__
            return func(*args, **kwargs)
        return deco
    @log
    def f1(a, b):
        print "f1() run."
        print a + b
    f1(1,2)
    # python test.py
    function name: f1
    f1() run.
    3

    4)装饰器加参数

    #!/usr/bin/python    
    # -*- coding: utf-8 -*-
    # 三层函数,调用 log 函数返回 deco 函数,再调用返回的函数 deco,则返回值是 _deco 函数
    def log(arg):
        def deco(func):
            def _deco(*args, **kwargs):
                print "%s - function name: %s" % (arg, func.__name__)  
                return func(*args, **kwargs)
            return _deco
        return deco
    @log("info")
    def f1(a, b):
        print "f1() run."
        print a + b
    f1(1,2)
    # python test.py
    info - function name: f1
    f1() run.
    3

    再举一个例子,给函数输出字符串带颜色:

    #!/usr/bin/python    
    # -*- coding: utf-8 -*-
    def fontColor(color):
        begin = "\033["
        end = "\033[0m"
        d = {
            'red':'31m',
            'green':'32m',
            'yellow':'33m',
            'blue':'34m'
        }
        def deco(func):
            print begin + d[color] + func() + end
        return deco
    @fontColor("red")
    def f():
        return "Hello world!"
    @fontColor("green")
    def f2():
        return "Hello world!"

   可以看出装饰器处理方式满足了高阶函数的条件,所以装饰器也是一种高阶函数。

   优点:灵活给装饰器增加功能,而不修改函数,提高代码可重复利用性,增加可读性。

5.9 匿名函数

匿名函数:定义函数的一种形式,无需定义函数名和语句块,因此代码逻辑会受到局限,同时也减少代码量,增加可读性。

在 Python 中匿名函数是 lambda。

举例子说明 def 关键字与 lambda 函数定义函数区别:

# 普通函数
>>> def func():
...   return "Hello world!"
...
>>> func()
>>> def func(a, b):
...   return a * b
...
>>> func(2, 2)
4

# 匿名函数
>>> f = lambda:"Hello world!"
>>> f()
'Hello world!'
>>> f = lambda a, b: a * b   # 冒号左边是函数参数,右边是返回值
>>> f(2, 2)
4

lambda 函数一行就写成一个函数功能,省去定义函数过程,让代码更加精简。

5.10 内置高阶函数

   5.10.1 map()

   语法:map(function, sequence[, sequence, …]) -> list

   将序列中的元素通过函数处理返回一个新列表。

   例如:

    >>> lst = [1,2,3,4,5]    
    >>> map(lambda x:str(x)+".txt", lst)
    ['1.txt', '2.txt', '3.txt', '4.txt', '5.txt']

   5.10.2 filter()

   语法:filter(function or None, sequence) -> list, tuple, or string

   将序列中的元素通过函数处理返回一个新列表、元组或字符串。

   例如:过滤列表中的奇数

    >>> lst = [1,2,3,4,5]    
    >>> filter(lambda x:x%2==0, lst)
    [2, 4]

   5.10.3 reduce()

   语法:reduce(function, sequence[, initial]) -> value

   reduce()是一个二元运算函数,所以只接受二元操作函数。

   例如:计算列表总和

    >>> lst = [1,2,3,4,5]    
    >>> reduce(lambda x,y:x+y, lst)
    15

    先将前两个元素相加等于 3,再把结果与第三个元素相加等于 6,以此类推。这就是 reduce()函数功能。

本文转载自 第五章 Python 函数你知多少


蜷缩的蜗牛 , 版权所有丨如未注明 , 均为原创丨 转载请注明第五章 Python 函数你知多少
喜欢 (0)
[]
分享 (0)